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Properties of ridges in elastic membranes
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When a thin elastic sheet is confined to a region much smaller than its size the morphology of the resulting
crumpled membrane is a network of straight ridges or folds that meet at sharp vertices. A virial theorem
predicts the ratio of the total bending and stretching energies of a ridge. Small strains and curvatures persist far
away from the ridge. We discuss several kinds of perturbations that distinguish a ridge in a crumpled sheet
from an isolated ridge studied earligh. E. Lobkovsky, Phys. Rev. B3, 3750(1996]. Linear response as
well as buckling properties are investigated. We find that, quite generally, the energy of a ridge can change by
no more than a finite fraction before it buckl§$1063-651X97)02002-3

PACS numbes): 03.40.Dz, 46.30-i, 68.55.Jk

I. INTRODUCTION ling instability is always treated perturbatively. This level of
analysis is sufficient for determining the buckling pattern as
There is an abundance of phenomena involving stron@ function of the loading. Discussions of the post-buckling
deformation of thin elastic membranes that span a widdehavior are highly problem specific, however. The authors
range of scales. On the microscopic scale, phospholipidf Ref. [13], for example, realized that in the limit of the
membranes behave like a solid below a two-dimensionavanishing thickness, the diamond buckling pattern of a cy-
(2D) freezing point1]. Some inorganic compounds such aslindrical shell consists of almost flat facets and almost sharp
graphite oxide[2] and molybdenum disulphitg3] also be- ridges. Understanding of the mechanism that governs the
have like elastic membranes on scales large compared to tlsbarpness of the ridges and their energy is lacking, however.
interatomic spacing. The graphite oxide sheets can be coA similar phenomenon was observed in strong axisymmetric
lapsed in solution by inducing an effective attractive interac-buckling of a spherical shell by Scheidl and Trofg4]. The
tion between distant parts of the sheet. Molybdenum disharp circular ridge was identified as the boundary layer that
sulphite has also been observed in a “rag” phase that lookins the solutions in the two weakly deformed regions of the
similar to a crumpled piece of paper. Mechanical propertieshell. The boundary layer width was found to scale with the
of macroscopic thin elastic plates and shells undergoingquare root the shell thickness.
large deformations are important in engineering of safety It has been suggested recently by the author and others
structureq 4] and packaging material developméght. [15,14 that membrane stresses in a strongly crumpled elastic
Stability and post-bucking properties of thin shells andsheet are confined to a set of straight ridge singularities or
plates have been a subject of intense investigdidnFew  folds. These ridge singularities, which were shown to arise
general results have been derived, however. Due to the conunder quite general conditions, constitute another case of the
plexity of the equations that describe large deflections of thirboundary layer phenomena in thin plates. A scaling law for
plates (two quadratic fourth-order partial differential equa- the ridge width as a function of the plate thickness had been
tions), rigorous proofs are difficult to achieve. Difficulties in established with the use of an energy scaling argursjt
treating thin shells and plates arise due to the fact that and a boundary layer analysis of von rdan thin plate
small parameter related to the thickness of the shell multiequationg16]. Elastic energy was found to be confined in
plies the highest derivative term in the equatidi It is  the ridges and to scale as 1/3 power of the size of the ridge
well known that this fact gives rise to a variety of boundaryfor a fixed plate thickness. Other scaling laws such as the
layer phenomena in the bending of thin shdl§. Many  dependence of the ridge width and energy on the dihedral
different types of boundary conditions that lead to a boundangle were also investigated.
ary layer have been analyzed. They include bending mo- In this article we extend the analytical and numerical
ments[9], shear force§10], and free boundary conditions study of the ridges to explore whether the results obtained
with distributed bending momenfd1]. A common feature for isolated ridges can be successfully applied to a network
that emerges from these studies is that membrane stressefsinteracting ridges in a crumpled elastic sheet. In Sec. Il we
become confined to the boundary layer region whose sizmtroduce the concept of the “minimal ridge,” which refers
vanishes as some power of the shell thickness. to the necessary and sufficient conditions leading to the for-
The study of the buckling instability and post-buckling mation of the ridge singularity in the limit of the vanishing
behavior of thin plates and shells is a well-developed fieldplate thickness. Deviations from these “minimal” boundary
within the discipline of continuum mechanics. For a reviewconditions in a crumpled sheet can then be treated, at least in
of the methods and results see, for example, R&. Buck-  the first approximation, as perturbations to the minimal
ridge. In Sec. Il we discuss a “virial theorem” for ridges
that is a direct consequence of the energy scaling argument.
*Electronic address: a-lobkovsky@uchicago.edu; World Widelt provides a useful tool in testing the confinement of elastic
Web homepage: http://rainbow.uchicago.edobkovsk energy and the degree to which ridge interaction influences
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it. In Sec. IV we present a scaling argument and an extensioHere e, is the antisymmetric 2 tensor. Summation over
of the asymptotic analysis of the von iaan equations that repeated indices is implied.

establish that there is a long-range decay of the longitudinal All lengths are measured in terms of the strip witdtland
ridge curvature and the transverse stress far away from thenergies in  terms of the bending rigidity
ridge. The energy in these ridge “echoes” is negligible com-x=Y h?/12(1— »?). The first von Kaman equation is the
pared to the energy of the ridge. A perturbation frameworkstatement of the local normal force equilibrium. The second
for dealing with external forcing of the minimal ridge is one has a purely geometric origin. It simply states that
presented in Sec. V. A particular case of the ridge compressaussian curvature- 3[ f,f] acts as a source for the stress
sion is studied in detail and the scaling of the elastic energfield. The small parametex~h/X is proportional to the di-
correction is found. We show in Sec. VI that the small echomensionless thickness of the sheet. Hipey) and x(X,y)
strains and curvatures are sufficient to change the energy ofs@ge the potentials whose derivatives give the curvatures
far away ridge by a finite fraction. Numeric evidence cor-C,z and the two dimensional in-plane stresseg; via
roborating some of the claims made in the previous sections

is presented in Sec. VII. Finally, implications of the ridge CaB:x—Zgaan, 3)
properties for the crumpling problem as well as future work

are discussed in Sec. VIII. T ap= KX’zea,LeﬁVﬁM&,,x. (4

Il. THE “MINIMAL” RIDGE To clarify the meaning of the curvature tengdy; we note
that its eigenvalues are the inverses of the principal radii of

.TO facilitate a gtudy of the ridg_e singularity one must ﬁrs_tcurvature of the sheet. The sheets assumes a conformation
write down equations that desc_:rlbe large defle_qtlons of th”{ at minimizes the elastic energy consisting of the bending
plates. Second, an understanding of the conditions that le d the stretching partsneasured in the units of)

to the formation of the ridge singularity must be achieved. It
was suggested in Refl16] that the existence of the sharp
vertices where both radii of curvature are of the order of the Epend= f dx dy[ V2f]?, (58
sheet thickness is a necessary and sufficient condition for the

formation of ridges. Ridges connect these points of high cur-
vature. A minimal way to create a ridge, therefore, R&6]
argued, is to introduce sharp points at the boundary of a flat
rectangular piece of elastic material by requiring that its
boundary follow a frame that has a sharp bend. The von There are two ways to supply boundary conditions for the
Karman equations that describe large deflections of thin elasvon Kaman plate equations consistently. First, one could
tic plates can be used to deduce the asymptotic behavior apecify a Kirchoff-type condition on the functiorfsand y

the ridge solution in this simple geometry. and their derivatives in terms of thmaterial coordinates.

Let us recall the boundary-value problem that exhibits theSecond, a prescribed shape in #@beddingspace corre-
ridge singularity{16]. Consider a strip made of isotropic ho- sponds to clamping the boundaries of the strip or simply
mogeneous elastic material with Young’s moduMisand  supporting them. Only the first type of boundary condition is
Poisson ratiov. It has thicknes$ and widthX. The points tractable in general since the relation between the derivatives
are labeled by the material coordinates,y() so thatx  of the functionsf and y and the shape of the sheet in the
e (—X/2,X/2). The strip extends in thg direction. Normal embedding space is nonlinear. In addition, even if one suc-
forces are applied to the long boundanes + X/2 in such a ceeds in translating the boundary conditions that make refer-
way as to force the boundary to follow a rectilinear frameence to the embedding space into the languagk afd y,
that has a sharp bend gt=0. The bend dihedral angle is they will changewhen the thickness of the sheet is varied or
7—2a (so thata=0 corresponds to a flat stjipThe shape external forces are applied. Therefore, only when the stresses
of the strip and the elastic stresses are found from a solutioand curvatures arspecifiedat the boundary can one make

Estrz)\zf dx dy[ V2y]2. (5b)

to the nondimensionalized von Kaan equations any analytical progress. We must remark at this point that the
effective boundary conditions for a ridge in a crumpled sheet
V4 =[x.f1, (1a) are not of this type. Stresses in the facets are nonzero. More

importantly, they depend on how each ridge is stressed by
the rest of the sheet.
A2V4y = — E[f,f]. (1b) The minimal ridge boundary conditions are given in terms
2 of the curvature at the boundary. The only requirement is
that there be two sharp points on each long boundary of the
HereV4=V2V? and a set of square brack¢tsb] denotes a  strip. The stresses and torques vanish at the boundary
symmetric contraction of the second derivatives of the fieldsx= = X/2 (except at the singular poiryt=0)
a andb,
9a0gx=0,05F=0. (6)
[a,b]Eeaueﬁy(ﬁaﬂﬁa)(ﬁﬂﬁyb) ) )
The sharp vertices introduced at the boundary can be math-
_a b +f7za b ) #a &b ,  ematically expressed as singularity in the curvature at the
T axZ ay? T ay? axZ Caxay axdy @ boundary pointy=0 andx= =+ X/2,
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9%f as a power ofC, they must be comparable when the total
Y ad(y). (7)  energy is minimized. It immediately followed that
CN(K/G)_1/3X_2/3~h_1/3X_2/3.
The coefficientx in Eq. (7) is exactly the bending angte of Another important conclusion of the energy scaling argu-
the frame which is equal to the half of the difference of thement emerges when we consider the derivative of the energy
dihedral angle of the frame froms [16]. with respect to the paramet€r It must vanish for the value

The motivation behind seeking the minimal ridge is that aof C at which the minimum total energy is achieved. Since
number of the asymptotic properties of the ridge singularitythe energies depend on powersive obtain the statement
are independent of the details of the boundary conditions.

These include the exponents in the asymptotic thickness dE _dEg  dEpena —SEsyrt Epena

scaling of the ridge curvature, elastic energy, and other quan- dC dC dc C s

tities. Dihedral angle scaling exponents are also independent

of the details of the boundary condition$6]. Other ridge  which leads to a ‘“virial theorem” for ridge€, cn=5Eqy

properties, which do depend on the details of the boundargnalogous to the virial theorem relating kinetic to potential

conditions(the longitudinal stress supported by a ridge, forenergy in celestial mechani€$9]. The validity of this virial

example, can then be found perturbatively, at least in thetheorem rests on rather general grounds. The only require-

first approximation. The following two sections explore ad-ments are thafa) the energy be rigorously expressible a sum

ditional boundary-condition-independent asymptotic properof a bending and a stretching contributions dhyleach of

ties of the minimal ridge that are useful in the investigationthese varies as powerof a free parameter, he@. Thus a

of the effects of the crumpled sheet environment on the minifailure of the virial theorem would indicate that the energies

mal ridge. did not vary with the anticipated powers ©f Such a failure

would be expected i€ ! were comparable to other lengths

Ill. VIRIAL THEOREM in the problem, such as the size of the shéet

- . We have performed a numerical test of the virial theorem
A study of the minimal ridge/16] revealed that as the gjng a lattice model of an elastic sheet after Seung and

thickness of the sheet vanished, the shape developed a shajg|son[20]. A numerical verification of the virial theorem
crease. Detaﬂ; of how that smgular limit is approached Wergor the tetrahedral shape is presented in Sec. VI; here we
found. In particular, the elastic energy concentrates in &ny remark that the agreement is better than few percent.

small region around the ridge of the size given by the charyye myst point out that whereas the virial theorem holds in
acteristic ridge curvatur€. This fact allows one to construct e |imit of the vanishing shell thickness, the numerics

an energy scaling argument that yields the asymptotic scaknowed that the ratio of the total bending and stretching en-

ing behavior of the ridge curvatu@ and the elastic energy g gies is predicted by the virial theorem with a 10% accuracy
E [17]. _ . _for ridges of the size to thickness ratio greater than 1000. If

For the purpose of the energy scaling argument given i ey of the crumpled membrane as a network of ridges that
Ref.[17], let us rewrite the expressions for the bending andneet at vertices is correct, the tetrahedron virial theorem

the stretching energies Eqe5) in terms of the principal g ggests that ridges in a crumpled sheet are well-defined ob-
strains y; and y, and the principal radii of curvature jects to which a scaling argument can be applied.
R;=1/C; andR,=1/C,. We get[18]

©)

1 IV. LARGE-DISTANCE BEHAVIOR
Ebendzif dS k(Cy+Cy)%+ kgC1C3l, (88 OF THE RIDGE SOLUTION

To ascertain how much ridges influence one another in a
crumpled sheet one must determine how the boundary-layer
solution, which is valid in progressively narrow region
around the ridge midline, joins onto the flat solution far away
G=Yhis the two-dimensional stretching modulus of a sheefrom the ridge. The following development is motivated by
of thicknessh made of elastic material with Young's modu- an observation that in a numerical implementation of a ridge,
lus Y. For the purposes of an energy scaling argument wehe echo strains and curvatures persist far away from the
may ignore the second terms in the expressions for the eneridge, despite the fact that most of the energy is concentrated
gies. The argument given by Witten and Li in R¢L7] into a region of asymptotically vanishing width. In fact, the
estimates these energies in terms of a characteristic curvatugharacteristic decay length of the echo strains and curva-
C, for example, the transverse curvature in the middle of theures may diverge in the.—0 limit. In this section we
ridge. According to that argument, if the length of the ridge,present an energy scaling argument for the existence and
i.e., the distance between the verticesXjghen the charac- asymptotic scaling of the decay lengthfor the minimal
teristic strainy~ (CX) ~2 exists in the ridge region of width ridge configuration. This conclusion is put on a more rigor-
C~1! so that the total stretching energy in the ridge is ap-ous footing by an extension of the asymptotic analysis of the
proximately Eg~G7y?*(X/C)~GX 3C~°. Similarly, the von Kaman equations that includes the matching condition
bending energy is given by the characteristic ridge curvaturbetween the boundary layer and the large-distance solution.
C, via Epeng~ kC2(X/C)~ kX C. Referenc¢17] then argued The scaling of the long-distance solution is later supported
that C is the only parameter that characterizes the ridgeby numerical evidence.

Also, since the bending and the stretching energies both vary We imagine cutting the ridge along its midline into two

1
Esn=§f dS G(y1+ ¥2)?+Ggy172]- (8b)
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tical due to the imposed boundary conditibs «|y| [this a
particular way to satisfy Eq(7)]. Here we are seeking the
scaling of the large-distance solution that is pieced together
with the ridge solution. Hence we can find such a solution
separately for either side of the ridge. This allows for arbi-
trary rescaling factors fof andy since the large distance
behavior off in the case of the wing is no longer required to
FIG. 1. Gentle cur\{at_ure_at the short end of a semi-infinite stripha |inear iny. The matching condition on, say?f/axz for
decays at a characteristic distarice some fixedy and\—0 requires that the wing solution for

, , , f scale with\ in the same way as the ridge solution, i.e.,
identical parts. For the boundary-value problem defined on _\ U5 \wheref is finite in thex—0 limit. The same rea-

'?rmcai of resulgqng Serr:"l'inﬂ?'ts Empnsc,i t:‘e rldr?;tieiectlvelh/ 'g' oning applies to the asymptotic scaling yaf Thus the re-
oduces some complicated bounadary co ons appiied. caling transformation that is needed to determine the scaling
the cut. The detailed form of these boundary conditions is : : S
) L of y in the wing solution is
not important for our purposes. It is significant, however,
that they have no singularities. For the purposes of an energy f= N5
scaling argument, we imagine that the short side of the semi- '

infinite strip i_s slightly bent so that its middle is displaced in The longitudinal directiorx is not affected by the rescaling
theTrrllgrmaI d'reCt'%n by an amouatas shhown on.Fl_g. dl transformation and the exponefitmust be negative since a
IS curvature decays to zero at a characteristic distanC,sitive g would reproduce the boundary layer scaling. Plug-

L from the short end of the strip. This length is set by the th l tz EAL1) into th Kaman Eas.(1
competition of the bending energy that favors quick decay O&ngmgizca ing ansatz EL1) into the von Kamen Eqgs.(1)

the curvature and the stretching energy that is smallest when

x=N"2%, y=2\fy, x=A2"%. (11

Fhe decay length is large. The bending energy is given by the pres pres pree

integral of the squared mean curvature over the area of the AN =420 s+ N Y —;

strip. If the decay length. is much larger than the vertical X Ix=dy ay
displacementa, the dominant curvature is in the (shor) =\~ 21B-28% ’]2‘] (129
direction and is approximatelg,,~a/X?. The bending en- Y

ergy is therE g~ kC2 XL~ ka?X L. Herex is the bend- Pl Pl Pr

ing rigidity and XL is the area of the strip where the defor- )\2‘2’3[7)2+2)\‘2B%+)\‘4BTX

mation exists. The strain created by the decay of the X IX“oy %y

transverse curvaturé,, is due to the fact that the middle of 1 o
the sheet is inclined by a small angle of ordét and thus =— 57\2’3‘2ﬁ[f,f]. (12b)
the projected length of the line that bisects the strip is shorter

than the length of the same segment of the boundary. Th
length mismatch creates a characteristic strain irytfleng)
direction y,,~a*L% Thus the stretching energy is
Esv—GvoyXL~xkh™2a*XL 3. Here we used the fact that

§alancing the dominant terms we obtgi+ —1/3 in con-
trast to 8= 1/3 for the boundary-layer solutidi6]. There-
fore, the decay length of the wing strains and curvatures

. . (oW T scales asXA 13, in agreement with the prediction of the
the 2D stretching modulus is related to the bending rigid- onerqy scaling argument above. The leading-order behavior

. . 2 - . .
ity via G~«/h”. Since both kinds of energies vary as a ot ihe elastic energy in the wings can be found by substitut-
power ofL, they must be comparable when the total energd¥ng the rescaled variables into Eq¢5). We obtain

Ependt Estr 1S minimized.l/\zNe thus 'obtain the scgling of the Euing~ <\ Y3 in accord with the energy scaling argument. In
decay lengthL ~X(a/h)™. The displacemena is deter-  gec” v we numerically verify the existence of the long-
mined by the scaling properties of the ridge. The asymptotiange decay of the curvatures and stresses away from the

. 2 - -
scaling of Cy,~a/X" must be consistent with that of the yigge The decay length is found to scale as predicted in the
longitudinal ridge curvatured“f/dx“~N""/X. Therefore  gmalli-thickness limit.

a~X\Y3 which yields the scaling for the decay lendth

and the elastic energy in the ridge “wing” in the—0 limit
V. RIDGE UNDER EXTERNAL FORCING

L~XN"Y Eping~ kN2, (10 To assess the relevancy of the results obtained for the
minimal ridge to ridges in a crumpled membrane, we must
Notice that the energy in these ridge wings or echoes is nedirst discuss ways in which the effective boundary conditions
ligible compared to the ridge energy that scaleskas *®  for a ridge in a crumpled sheet differ from that of the mini-
[15]. This energy is spread over an increasingly large areamal ridge, and second, we ought to determine how these
The scaling of the ridge wings can be also obtained fromdifferences affect such relevant ridge properties as the coef-
an extension of the asymptotic analysis of the voni@  ficients in the thickness scaling laws. The additions and
equations. Referencfl6] determined the scaling of the changes to the rectilinear frame boundary conditions for the
boundary-layer solution by rescaling all variables by a poweminimal ridge, which distinguish them from realistic bound-
of A as in Eq.(16) and then requiring that the highest de- ary conditions for a ridge in a crumpled sheet, can consist of
rivative terms in Egs(1) be of the same order in. The (a) stresses applied at the bounddhy,torques applied at the
exponents of tha. factors that rescalefl andy were iden-  boundary, andc) distributed normal forces that arise when
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distant parts of the crumpled sheet press on the ridge. tures in the unperturbed ridge. According to Rglf6], the

In this section we discuss the linear response of the minidominant(dimensionlessstresses and curvatures are of or-
mal ridge to external perturbationA.priori, there is no rea- der\ ~*3in the region of the ridge of width />, Section IV
son to believe that the asymptotic scaling of the linearof this article determines the behavior of the stresses and
response moduli is independent of the details of thecurvatures in the rest of the sheet. The dominant non-
boundary conditions that create and, more importantly, maindimensional stresses and curvatures in the ridge wings are of
tain the ridge in the process of external loading. In otherorder A3, These echo disturbances are spread over a large
words, if we have chosen to maintain constant normal forcegegion of sizeL~\ "3 so that the elastic energy in the
on the boundaries instead of maintaining constant curvaturgyings is negligible compared to the ridge energy. The cor-
the scaling of the linear-response moduli with the thicknessection to the ridge solution will possess the same qualitative
could be different. In fact, numerical evidence suggests thafeatures as the source terms in Eds}) that determine them.
the scaling of the ridge stiffness with respect to compressioince the behavior of the source terms in Edg) is com-
does indeed depend on the way boundary conditions argletely determined by the minimal ridge solution we postu-
maintained as the ridge is being distorted. One must thergate that the perturbing energy is confined to the region of the
fore address the appllcablllty of the results derived in thlSndge of width )\1/3_ We will use this feature later to deter-

section to the determination of the elastic response ofine the appropriate integration domain for the ridge energy
crumpled sheets where the details of the boundary conditionsorrection due to the external forces.

are not known. We are unable to address this question here At this point we must mention how distributed forces
beyond suggesting that the linear response of a regular tetrgould be included in this treatment. On the one hand, we
hedron considered in Sec. VII might reflect the situation incould find the effect of the external forces on the flat strip
the crumpled sheet given our view of the crumpled memyyith free boundaries and then proceed with the derivation as

brane as a collection of vertices, ridges, and facets. above. On the other hand, distributed normal forces can be
directly added to the first von Kman equation(14g since it
A. Linear response to specified boundary forces states the normal force balance on an infinitesimal element of

We present a treatment that allows one to construct éhe sheedxo!y. External in-plane forces lead to a redefini-
on of the Airy stress functiory. It may not be at all pos-

consistent perturbation expansion in the small external forcel ] . )
that act at the boundary. The case of the distributed extern&l'ble to define a stress function when in-plane external forpes
forces can be treated in a similar manner that will be dis2'€ Present, however. External distributed torques result in a
cussed below. This method of treating perturbations is by ngedefinition of if its definition is indeed possible. This is
means unique. It allows one, however, easily to establisiertainly the case for small deflections when Monge coordi-
asymptotic scaling of the energy correction in the limit of thenat_?s can br? 355{‘16]' 4 ab ¢ soiitting the bound
vanishing membrane thickness. The essential idea is to refor- 1€ Method presented above of splitting the boundary-
mulate the problem in terms of some new functidngnd value problem into two is applicable when several conditions
Xi that are subject to thenchangedninimal ridge boundary &€ satisfied. First, note that if the equations were linear, the
I

conditions B, but satisfy modified equations. Consider the result of such splitting would be trivial S_ir?ce the equations
case when the full boundary forc@,, (including the ap- for f; andy; would l_Je_ the same as thg original equations and
plied external forces can be X decomposed  into the result of the splitting the problem into two amounts to the

B, =B, +oB. Let f, and y. be the solution to the principle of superposition. Second, the perturbed boundary
ext™ . e e

boundary-value problerB that includesonly the small ad- conditionsB,,; that include the external force must bem-

ditional forces(i.e., the strip is not bent We then seek the patible V‘.’ith the boundary condition8,. For_ pompatibility .
solution to Eqs(1) subject to the full boundary conditions in we require that both sets of boundary conditions are supplied
the form in terms of the same functiorfand derivativesof f andy at

the boundary. Thus the change fr@y to B.,; amounts to a
f=fi+fe, X=XitXe» (13 change in the boundamaluesof the specified functions. We
denote the change in these boundary values schematically as
so thatf; andy; are subject to the same boundary conditionséB=B,,,— By. This condition ensures that the boundary-
By as the undisturbed ridge solution, but satisfy modifiedvalue probleméB for f, and x. is well posed. Third, we
equations assumed that the part of the boundary conditi@asthat
create the ridge is unchanged in the process of loading.
VHi=0xi fil+Ixe. fil+[xi fel, (149 It is unknown to us whether these conditions are satisfied
in a crumpled sheet. We will see below that the prediction
based on this method, for the linear response to point forces
acting at the vertices of a regular tetrahedron, is incorrect. A
possible explanation is that precisely the conditionBgrto
For a sufficiently small perturbation one can construct a sebe held constant in the process of loading is violated in the
ries expansion around the unperturbed solution. tetrahedron. The effective boundary conditions for each
The equations for the first-order corrections to the ridgeridge in a tetrahedron, the stresses in the facets, for example,
solution are linear and inhomogeneous. The coefficients amay change in proportion to the forces acting at the vertices.
well as the source terms are proportional to the second dddowever, it might be possible to modify the conclusions of
rivatives of the unperturbed minimal ridge solution. Thesethis method for a general case of changing boundary condi-
second derivatives are proportional to the stresses and curvéiens. Certain features that emerge from the perturbation

A2V4 -Z—E[f- fil—[fe,fil (14b)
Xi oLTinhi erlil-
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with 6=2/3 andB=—1/3 chosen in such a way as to bal-
F ance the powers aof in front of the terms in the Eq414)
F that are relevant in the boundary layer. As in Ré6], we
seek the solution to the rescaled equations as a series expan-
sion in A3,

’f'i:fi(0)+)\2/3fi(1)+)\4/3fi(2>+ . (17a
’)‘(’i =XI(O)+ )\Z/SXi(l)+ )\4/3Xi(2)+ R (17b)

The equations for the zeroth order terfi¥ and x*) read

FIG. 2. Long strip of widthX, bent by normal boundary forces 40
(one-quarter of which are shoywand compressed by forc&sap- I :[X(O) f_(o)]+)\1/3|:_[f_(o) &1 (183
plied at the vertices. VA bt o
scheme are likely to survive for a general loading. In particu- ax\? 1
lar, the effect of the perturbation is likely to be confined to ——=— [f9 £, (18b)
the ridge region as above. 4% 2

Another limitation of this method stems from the arbi- . . .
trariness of the choice of the external load. In other words, of-€t us examine the source term in detail,
all possible ways to load the ridge, the one in the ridge’s 0 —~ 0 ~
“weakest direction” is relevant to determination of the elas- () ;1 1O Pp(X,y) H\fz/sazfi( : ﬁ2¢£x,y)
tic response of crumpled sheets. It may happen that due to b X2 ay? dy Jx?
high symmetry, the chosen load does not “have a component
in the weakest direction” of the ridge. As a result, the stiff-
ness of the ridge in response to such a load is qualitatively
greater than its stiffness with respect to a generic load. The

concepts in quotes above can be made rigorous. We disCU$$e gerivatives ofp are evaluated ax=% and y=\'%.
various types of loading in Sec. VD with regard to their gince the rescaled variables are finite in the-0 limit,
relevance to the determination of the weakest ridge modulus¢,s behavior neay=0 determines the leading-order behav-

_ _ _ _ ior of its derivatives in Eq(19) in the A —0 limit. The mag-
B. Point forces applied at the ridge vertices nitude of the perturbation term is thus governed by

The analysis can be carried further when the external inF =\*F, where the value of the expongmis determined by
fluence is characterized by a single small dimensionless pdhe behavior of the derivatives @f near the ridge. For ex-
rameterF. In particular, for most of the following develop- @mple, suppose all derivatives gfare finite aty=0. This is
ment, we explicitly consider the case of compression of thdndeed the case for the compression of a strip by a pair of
ridge by a pair of point forces acting at the ridge vertices adoint forces[21]. Then, the second term in E¢L9) domi-
shown on Fig. 2. Presumably, there are loads for which théates so thap=—1/3. This behavior need not be generic
asymptotic scaling of the solution to the “flat” problem Since the derivatives op may vanish ay =0 by reasons of
fo and y, is different from that in the case of the point Symmetry. Then the second term in Eg9) may vanish so
forces. This, however, introduces but a few changes in théhat a higher-order term ik dominates. This results in more
following derivation. positive value ofp.

A flat strip compressed by a pair of point forces acting at  The solutionf{®) and x{* to Egs.(18) can be sought as a
the boundary remains flat for small enough forces. In addiseries expansion in the small parameferThus the zeroth-

T PRy) 9
Xy Xy

tion, the stress function is linear in the applied foFee order term in thex?® expansion of the solution to the von
— Karman equations in the presence of the external forces act-
fe(X,Y)=0, xe(X,yY)=FN""o(X,y), (19  ing on the ridge is given byup to quadratic terms iff)
where the functiong(x,y) depends neither on the forée f<0>=fi(0>+fe:)\1/3(f0+Efl+E2f2), (209

nor on the dimensionless thickneds Above a buckling
threshold for the compressing forces, the flat solution Eq. 0)— (0 —\—2/3 = T2 —1F
(15) becomes unstable to small perturbations. Another buck- X XU XA T ot Pt oG A F¢(-20b)
led solution exists and may have a different dependence on
the forceF. This does not affect the linear-response analysisThe terms linear irfF completely characterize the linear re-
however, since the flat solution is unique for snfall sponse of the ridge to this particular type of loading. In gen-
We proceed with the boundary-layer analysis followingeral, according to the postulated confinement property of the
Ref.[16]. This involves rescaling all variables by a power of perturbing energy, second derivativesfefand y; possess
\, the same qualitative features as thosd pand y,. In par-
_ ticular, the dominant second derivatives fof and y, are
fi=NPf, %=\, X=\%, Y=\Py, (16)  significant in the ridge region of characteristic widtfy*,



55

Substituting ther expansions into Eq$5), we obtain the

PROPERTIES OF RIDGES IN ELASTIC MEMBRANES

1583

This means that the linear termsHnin the expression&23)

expressions for the bending and stretching energies accurafer Ey.,qand Eg, must cancel each other, i.&€5=—E® to

up to terms of ordeF?,

Epend=ES+ E2F + ESF2,

(21a

Eq~ES+ESF+ESF2 (21b
The energy of the unperturbed ridge as in REf6] is
ES~ES~\ ~ 3 OtherE;’s are sums of integrals that involve
second derivatives df;, x;, and¢. For example,

EEE:)\ZJ dxdy(n 25 V2, + N IFV2)2

(92

ay

_ L ’92)(1 2
=F2j dxdy| 13+ 77| TV

oo

+F2f dxdy(V2¢)2. (22)
We must remark that the terms quadraticHrthat involve
f, and y, cancel each other so that the lineaFirtorrection
to the potentiald and y determines the quadratic correction
to the total energy. This situation is common to all linear-
response problems.

The leading-order behavior d&; and E, in the small

all orders in the\?® expansion AS= — A" BS=—-B?, etc).
The numerics reported in Sec. VII convincingly show that it
is indeed the case. The scaling of the ridge’s elastic con-
stantE, given in Eq.(23b) has also been shown to be con-
sistent with the numerics.

When external forces distort the ridge, additional longitu-
dinal strain results. We first define a “vertex-to-vertex”
strain vy, as the amount by which the vertices move closer
together divided byX. We compare this quantity with the
additional strain in the sheet that is the change in
Y= (1Y) d%x19y?. It can be found from the first order in
F correction toy Eg. (20). We can infery, by inspection of
the energy-force relation, since the work doneys the
change of the energl,F?,

Yo NEoF ~ (AN 20 £ B4+ CoMF =Gk F,
24)

whereas from Eq(20) we obtain the change in the longitu-
dinal strain in the sheet

,ying \ 2/3+ pE (25)

Equation(25) gives another way to estimate the exponent

thickness limit can be found by assuming, as before, that thg nymerically.

corrections to the ridge solutidn andy; are confined to the
ridge region. The domain of integration ynin the integrals
involving these ridge corrections as in E@?2) is thus of

orderA. We can therefore obtain the asymptotic scaling of

the coefficients in Eq921). The bending and the stretching
pieces scale withk _in the same way. The correction to the
total energy isE,F?
b, b.s)y — b,
Eg_ S)"‘A& S))\ 1/3+p+ Bg_ S),

(233

E,=ES+Eb~AN Y204 B\P+C,, (23b

whereAj3, etc., are arbitrary coefficients that do not depend

on A in the A—0 limit. If external stresses and curvatures
given by the derivatives of. andf., respectively, are zero
on the ridge line and do not increase sufficiently rapidly
away from the ridge, the exponeptwill be positive and

This way of looking at the problem motivates the follow-
ing consistency check of the perturbing energy confinement.
An additional way of determining the scaling of the total-
energy correction ViaE,F2~G(y3992wX/k~\ 23 2w
must reproduce the scaling &, obtained by explicit inte-
gration as in Eq.(23). Here w=w/X is the characteristic
width of the region in which the perturbing energy is con-
fined. Calculated by this method, the width-\*2 is inde-
pendent of the exponeptand scales with in the same way
as the ridge width.

C. Buckling threshold

An important property of the ridge solution that is inac-
cessible by this simple perturbation scheme is the force re-
quired tobucklethe ridge. In principle, one must solve Egs.
(18) and then perform a linear stability analysis of the solu-

large so that the energy correction will be dominated by theion to determine when the ridge will buckle. This task is

last terms in the expressions fiay andE,. These terms are

intractable analytically due to the complexity of the equa-

identical to the energy of a flat sheet acted on by the externalons. The asymptotic scaling of the buckling threshold may,
forces. If p<1/6, however, the energy change is dominatedhevertheless, be anticipated using the following argument.

in the small-thickness limit by the interaction of the ridge

The undisturbed ridge solutiofy, and x, is linearly stable

with the external forces given by the corrections to the ridgeagainst shape perturbations. Therefore, changes in this solu-

solutionfq, x1.

Equation(23) predict that both kinds of energy separately
depend linearly orF. We demonstrate numerically in Sec.
VII that upon application of point forces at the ridge vertices,

tion that destroy stability are likely to be of the order of the
solution itself. To induce such changes, the additional terms
in Eqgs. (18 for the loaded ridge must be comparable in
magnitude to the rest of the terms in the equations. Hence the

each energy correction does indeed depend linearly on thgarameterF that controls the magnitude of the additional

applied force with the coefficient that scales withas pre-

terms in Eqs(18) has to be of order unit§~1. This means

dicted. The total energy can depend only on the square of th@at in the case of ridge compressed by vertex forces, the

applied force since the boundary stresses and torques vani

for the undisturbed ridge so that the work done by the exter-
nal force is exactly the change in the ridge’s elastic energy.

Blckling threshold force scales as

I:critm)\_p- (26)
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FIG. 3. Same strip bent by normal forces applied at the vertices Y

as well as the middle of the ridge.

. . . FIG. 4. Ratio of the total bending to the total stretching energy
This argument has a serious flaw. The scaling of the ﬂa@s the dimensionless thickneksfor a regular tetrahedron of edge

problem solutionf and x. may be different for large forces |engih 10m. The asymptotic limit of 5 is approached for

F since additional solutions to the “flat-problem” may ap- =104

pear. This may result in a different value of the exponent )

and thus a different scaling of the buckling threshold. TheF can be found by noting that the torque of the external force
conjectured scaling of the critical load has two importantiS balanced by the flexural moment of the sheet due to its
implications. First, the additional longitudinal sheet strain atcurvaturexXd*fo/dx*~FX. Therefore,fe=\"'F¢ is con-

the buckling threshold given by the E@5) is of order of the  trolled by a single dimensionless parametértF. Since the
strain that existed in the ridge prior to compression. Secondsheet is bent in the short direction, we can use the arguments
the ridge energy correction at the buckling threshold value obf Sec. IV to show that this curvature persists up to a dis-
the external force has the same asymptotic thickness scalirignce of orderL~X\ "3, The treatment of Sec. IV also

as the energy in the undisturbed ridge. This conclusion igletermines the stresses in the strip. The dominant component
supported numerically in Sec. VII. A corollary of this state- of the stress isgyy~Yh(a/L)2, where aNfeNX)\_li

ment is that the applied load on a ridge does not have ience the stress is of second order in the applied férce

decisive effect on its energy. The ridge buckles when itsrhe modified von Keman equations(14) will thus have a
energy changes by a finite fraction. We will see in the fol-f-r =

. . . ) st order inF source term due td, and a second order in
lowing subsection that this argument applies to other types olu:L term due t on N now r t the st that
loading as well. Therefore, any two unbuckled ridges in source te ue .. ne can now repeat e steps tha

crumpled sheet with comparable lengths and dihedral ang| gad f_rom the modnﬁgd von Kenan equatlons(1_4) via a
should have comparable energies, even though they have dﬁgscallng transformation E.qu) to th.e perturbation expan-
ferent loads. sion _Eqs.(21). The only difference is the form of the flat
solutionf, and y,.
. With knowledge of the smal- behavior of the function
D. Other types of loading @, one can determine the expongnthat controls the ridge
To describe elastic properties of the ridge in a way that isstiffness under this particular type of loading. The important
relevant to determination of the structure of the crumpledsecond derivativey?¢/dx? is finite at the ridge. Therefore,
sheet we must investigate other types of loading. We firsp=—4/3. This means first that the linear response of the
consider other loads that can be treated with the perturbatioridge to normal forces is qualitatively greater than to in-plane
scheme developed above. These include normal forces actiffigrces. Second, the normal force required to buckle the ridge
on the minimal ridge. Having done that, we anticipate that inF .;;~X*2 is much smaller than in the case of longitudinal
a crumpled sheet the assumptions that lead to the scalingpmpression. The conjecture that the ridge buckles when its
laws for the energy corrections are violated. energy changes by a finite fraction can be made on the same
Let us first use the perturbation scheme developed abousasis as for the case of the longitudinal compression of the
to discuss other loads. The goal is to determine the weakesitge.
modulus of the ridge alluded to above. The perturbation We have thus shown that, depending on the symmetry of
treatment of this section relates the linear response of the flahe applied load, the linear response of the ridge can vary
sheet to the linear response of the ridge. We therefore antictonsiderably. It is unknown to us at this point whether the
pate that any perturbation that causes a large response inr@sistance of a crumpled sheet to further compression is de-
flat sheet will also be relevant to the determination of thetermined solely by the weakest ridge modulus. It is certainly
weakest ridge modulus. Since the bending rigidity Y h® not inconceivable to imagine a situation in which a number
of an elastic sheet vanishes faster in the O limit than the  of ridges in a crumpled sheet that form a kind of a “struc-
stretching modulu&~Y h, any perturbation that causes the tural skeleton” are loaded in such a way that their linear
sheet to bend will create a large response. We therefore conesponse is given by a stronger modulus.
sider normal forces on a ridge presented on Fig. 3. Let us finally discuss the applicability of the perturbation
Let us first describe the effect of these forces on a flascheme developed here to ridges in a crumpled sheet. We
sheet. The scaling of the curvature potenfiglwith force  anticipate the boundary stresses for the ridge in a crumpled
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FIG. 7. Dimensionless coefficiet@ g4 Of the linearF depen-

A dence of the “vertex-to-vertex” strain created by the external com-
pressive forceF for the strip (squares and the tetrahedroftri-
FIG. 5. Thickness dependence of the dimensionless coefficieningles. Solid lines are fits according Eq24). The tetrahedron
E, in E/k~Eq+E,F2 for the strip of dimensions 48< 100 ridge stiffnessG,qqe is qualitatively greater in the limit of the van-
(squaresand tetrahedron of edge lengthtbQriangles. The solid  ishing thickness.
lines are fits according to E423) with p=—1/3 for the strip and
p=0 for the tetrahedron. Inset: plot of the total energy of a gfrip  that power is. For example, the numerics reported in Sec. VI
units of the bending rigidity) as a function of the applied force show that when a tetrahedron is compressed by point forces
F. The solid line is the quadratic fit to the first five points. Dashedapplied to its vertices, the additional ridge strain scales in the
vertical line marks the buckling threshold. same way with\ as the vertex-to-vertex strain. This assump-
tion, together with the notion of the perturbing energy con-

sheet to change by an amount proportional to a load. Wénement, is sufficient to determine the scaling of the energy
cannot, therefore, utilize the perturbation method, developedorrection.
in this section, to determine the scaling of the energy correc-
tion and the buckling threshold. Certain features of the con- VI. RIDGE INTERACTION
clusions that emerged from the perturbation analysis are _ ) ) )
likely to persist, however. We anticipate that the perturbing Ridges in a crumpled elastic sheet can interact in two
energy is confined to the ridge region. In addition, thed'St'.”Ct ways. First, distant parts of_the sheet can press
change in the ridge longitudinal straithe dominant ridge @9ainst a ridge. This type of interaction can be discussed
strain must be proportional to the movement of the sheet!Sing the framework developed in Sec. V. However, a quan-
caused by the external forces. The vertex-to-vertex strain idtative understanding of the distribution of forces through
an example of such movement. The coefficient of proporfhe crumpled sheet is needed. Second, nearest-neighbor
tionality is likely to scale as a power of the thicknessin ridges can influence one another through the strains and cur-

particular aspect of the ridge interaction since we are able to

obtain quantitative conclusions.

Two length scales characterize a ridge. Most of the
ridge’s elastic energy is confined within a strip of width
L - w~ X\ Y3 around the ridge. Small curvatures and strains per-
sist up to a distance~ X\~ from the ridge. In a crumpled
elastic sheet typical distances between ridBeare of the
'El 1 1 order of their lengthD ~X. Assuming that all ridges have
the same characteristic siXe we are led to a conclusion that
w<D<L for most ridges. Therefore, the small residual
strains and curvatures of a ridge will influence its neighbors
e T in a way that is calculable within the framework of Sec. V. In
fact, in Sec. IV we argued that there is a small transverse
strain yy,~a?/L?~\*3 present in the sheet. This strain can
be thought of as resulting from an external fofce A% that
is stretching the sheet in the direction transverse to the ridge.

FIG. 6. CoefficientE} of the linear dependence of the total Therefore, the stress potential functigrhas a finite deriva-
bending energy in units of on the forcer for the 4bx 100 strip  tive d°¢/dx? at the ridge. According to the prescription of
(squarepand the tetrahedron of size BQtriangles. The solid lines  Sec. V,p= —1/3, so that the energy correction scales as
are again fits according to E§23) with the same values of the _
exponentp as in Fig. 5. SE~ kN~ Y3T20E2— )\~ 183 (27
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FIG. 8. Roof-shaped strideft) collapsed by
corner forces to obtain two stable buckled shapes
as viewed obliquely from above. The value of the
vertex forces must be reduced below the buckling
threshold in order to achieve stability. Shading is
proportional to the stretching energy density.

Note that the energy correction scales the same way with energies for the tetrahedron with edge length oflllObhis

as the ridge energy. This means that even though the ridgatio approaches the predicted valuekgf,,/E,=5 within
wings carry a negligible amount of energy, they cause thex few percent for the values of dimensionless thickness
total energy of the system to be changed by a finite fractionx <10~ “. For the smallest values of on the plot the ratio
This is not surprising since the transverse echo stresses digeviates from the asymptotic value due to lattice effects.
cussed in Sec. IV are of the same magnitude as the transverggs the virial theorem is obeyed within our measurement
stresses in the ridge. The interaction energy of ridges in Brecision.

strip geometry is studied numerically in the following sec-" tpe predictions of the scaling behavior of the ridge under

tion. It is found to be a few percent of the ridge energy in theexternal loading were done using a 48:3100 strip bent
small-thickness limit.

by boundary forces as well as a tetrahedron with an edge

length of 5®. We applied point forces to the vertex particles

VIl. NUMERICAL SIMULATION in either case in such a way as to compress the ridge. We first
OF THE RIDGE PROPERTIES compressed a flat sheet to verify that stresses are finite on the

In this section we use a lattice model of an elastic sheet ofine y=0. Then, the prediction for the expongntlefined in
Ref.[20]. This model was used by the authors and others t&ec. V isp=—1/3. The correction to the total elastic energy
verify a number of the ridge scaling propertig$,16. The  was found to depend oR? as anticipated. The coefficient

sheet is modeled by a _triangular lattice of springs of equilib-E2 of F2 should scale with according to Eq(23). Figure 5
rium length b and spring constank. A bending energy s a plot ofE, as extracted by a quadratic fit of the correction
J(1-n;-ny,) is assigned to each pair of adjacent lattice tri-of the total elastic energy per ridge for the tetraheditoia
angles with normal$; andn,. When the strains are small angle$ and the strigsquaresas a function ok. The inset of
compared to unity and radii of curvature are large comparedrig. 5 shows the fit to the quadratic dependence of the total
to the lattice spacing, this model bends and stretches like energy on the applied force.
an elastic sheet of thicknehs=b+/8J/K and bending modu- The numerically accessible range)ofdoes not allow for
lus k=J+/3/2. We chose a discrete model of this sort over aa direct determination of the expongnfrom the data. How-
conventional finite element scheme because the implementaver, the strip data are consistent with the prediction for
tion of disclinations and boundary conditions is somewhab= —1/3. However, the tetrahedron data are consistent with
more straightforward in the lattice model. As a tradeoff, wep=0 and inconsistent witlp=—1/3 when fitted with the
must strictly control the finite-size lattice effect. Referencescaling form Eqs.(23) and (24). A given load appears to
[16] makes a careful study of the lattice effects. store qualitatively less energy for the tetrahedron than for the
Ridges can be created either by imposing appropriatstrip, i.e., the tetrahedron is qualitatively stiffer. This differ-
boundary conditions to a long strip of the simulated materiaence might be explained by noticing that in the case of the
or by introducing disclinations. We studied both types ofstrip, the boundary shap®,, which maintained the ridge,
shapes. First, we applied forces to the particles located on theas fixed under the loading, whereas the effective boundary
long boundaries of a strip so as to constrain them to lie irshape for the ridges in a tetrahedron changes when forces are
different planes on each side of the ridge. The angle betweeapplied. In addition, tangential stresses act on the the effec-
the normals to these planes isz2Second, we connected a tive ridge boundary in a tetrahedron, whereas only normal
triangular piece of this simulated material into a regular tetboundary forces are present in the strip geometry. Therefore,
rahedron so that each edge then became a ridge. A sequertbe decomposition method of Sec. V cannot be used for the
of minimum energy shapes of different dimensionless thicktetrahedron. The scaling of the tetrahedron stiffness implies
ness\A were obtained with the use of a conjugate gradienthat the additional strain due to the action of the compressive
routine. External forces were then applied to the ridge vertiforce is confined to the ridge region and scales the same way
ces and the linear response to compression was measuredveith the thicknessn as the vertex-to-vertex strain. These
well as the buckling characteristics. results are different from the situation in the strip. There, the
We first tested the virial theorem that predicts that if all of vertex-to-vertex strain may be relaxed through bending so
the elastic energy is concentrated in the ridges then the tot#éhat the additional strain in the sheet is qualitatively weaker
bending energy is five times the total bending energy. In Figthan the movement of the vertices would dictate if such re-
4 we plot the ratio of the total bending to total stretchinglaxation were not possible.
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b ny transverse curvature

C_, longitudinal curvature

FIG. 9. Tetrahedron latticéleft) collapsed by application of .

vertex forceqright). A complicated buckling pattern results. 0 1 2 3
Distance From the Ridge y/X

In Fig. 6 we plotE® for both shapes extracted by a linear
fit of the total bending energy as a function lef The data FIG. 11. Transverse ridge curvatug, (squaresand longitu-
are consistent with the prediction E@3) for the same val- dinal curvatureC,, (circles in units of X™* along the perpendicular
ues of the exponents as obtained from the scaling &,. bisector of the ridge vs the distance from the ridge for a
Finally, we graph the coefficier, . of the linear depen- 5250 strip.

dence of the induced vertex-to-vertex strain on the applied

force in Fig. 7. The data are consistent with the predictiorPy @ finite fraction before it buckles. More numerical tests
Eq. (24). For comparison let us consider a flat strip. Its di- &€ needed, however, to establish this assertion firmly. We

mensionless stiffness ! to compression diverges as ?, did not attempt to characterize the buckling of the tetrahe-

whereas its stiffness to bending vanishes\as dron in further detail. _ , ,

An important question that needs to be settled numerically '€ large-distance behavior of the ridge wings was tested
is the buckling threshold of the ridge. The vertex forces werd?Y USing a long 58X 50(b strip. Figure 11 displays the
increased until the shape underwent a radical change. Thi§ANSverse curvature,, and the longitudinal curvature,,
seems to imply that buckling is a first-order phenomenon. I units of X~ along a perpendicular bisector of the ridge. A
other words, there are several stable shapes other than 9, almost linear, decay of th€,, is evident, whereas
ridge for a range of compressive forces below the bucklind®yy decays rapidly to zero. We extracted the decay length
threshold. Figure 8 shows two such buckled bent strig- for @& sequence of ridges of varying and plotted the
shapes. A buckled tetrahedron shape shown in Fig. 9 exhibif§sults in Fig. 12 versus the predicted scaling variable
a more complex buckling pattern. Shading is proportional tor - The linear fit shows that the data agree well with the
the stretching energy density. prediction. _ _ . . _

In Fig. 10 we plot the ratio of the energy correction to the  We next investigated the question of ridge interaction.
total elastic energy of the undisturbed ridge at the bifurcationl Wo parallel ridges were created in the strip geometry. We
point of the loaded tetrahedron. This ratio seems to be ap:aried the distance between the riddess well as the thick-
proaching a constant in the—0 limit, which would agree N€SSA. Detailed interaction features that are shown in Fig.
with the prediction that the energy of a ridge can only changel3 for the 108X 130 strips for a fixed\ =0.0002 depend

0.04 T T T T T
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Ecr-Eyp

32 b

0 0.0001 0.0002 0.0008 28
A 9 12 15
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FIG. 10. Ratio of the energy correction at the buckling threshold A

of the tetrahedron of edge lengthlb@ the energy of the undis-

turbed tetrahedron as a function of the dimensionless thickxess FIG. 12. Decay length of the longitudinal curvaturein the
The empirically drawn solid line suggests that the energy correctiomnits of X vs the predicted scaling variabla Y for a
varies roughly linearly with\. 520 <500 strip.
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FIG. 13. Total elastic energy of a two-ridge configuration inthe 5 14 Ratio of the difference of the total energy of two ridges

uniots of « found from a 108> 130 strip bent in two places by 54 wice the energy of one ridgeE divided by the energy of one
90° vs the distance between the ridgBs The thickness is \jyse E as a function of for a fixed interridge separation

A=0.0002. Squares correspond to the ridges that have the sam¢_1 15¢ The data are obtained from simulation of &52500h

orientation (configurationU), whereas the triangles correspond 10 gyin hent in two places. The lower curve corresponds to the con-

two ridges of the opposite orientatigoonfigurationZ). figurationU in which the two ridges are have the same orientation
and the upper curve corresponds to the ridges of the opposite ori-

on the relative orientation of the ridges. If they are bothentationZ.

concave(or both convex as seen by looking down on the

sheet from abovéconfigurationU), they repel at short dis- action changes the system by a finite fraction is convincingly

tances and attract at long distances. The situation is reversé@nfirmed.

if the ridges have different orientatiqone is folded up and

the other one down, or vice versa: configuratin VIIl. DISCUSSION

The signs of the interactions can be readily understood. At

short distances, the two interacting ridges become a single In this article we explored properties of the ridge singu-

ridge. If the two ridges have opposite signs, there is no ridgéarity in thin elastic plates that may be relevant to a quanti-

when they are brought together and thus the total energy f@tive analysis of crumpled elastic membranes. A virial theo-

zero. If they have the same sign, the combined ridge hatMm that relates the bending and stretching contributions to

twice the dihedral angler as the constituent ridge. Since the total elastic energy has been derived from an energy scal-

ridge energy scales ag’® [16], the energy aD=0 should ing argument and verified nu_mencally. The_vmal theorem

be 2732 times that ab = . The behavior of the interaction affords a useful test of elastic energy confinement. When

enerav at larad is also understandable. Here the deforma-mOSt of the elastic energy is confined to the ridges the virial
-nergy 9 : S ' e . theorem predicts the ratio of the bending and stretching en-
tion between the ridges is minimal. For opposite sign ridge

f onZ). th field din th . Sergies in the small-thickness limit.
(configurationZ), the curvature fields created in the region We have developed a perturbation expansion scheme that

between the ridges have opposite signs. For same-sign ridgggq,s one to calculate the effects of external forces on the
shaped likeJ, deformations caused by the two ridges at thescajing properties of the ridge singularity. We found that the
midpoint reinforce each other. In a medium with a quadratlcprob|em can be decomposed into first solving for the effect
energy functional, such reinforcing deformations lead to &f the external forces on the flat sheet and f, and incor-
reduction in energy. Conversely, two opposite-sign ridges ithorating this solution into the equations that describe the
a Z configuration have opposing deformations at the mid-ridge singularity in a way that is particularly convenient for a
point. This yields a repulsion. perturbation expansion. This method allows one to determine
For a complete account of the interaction energy, we musthe scaling of the energy correction. This correction scales
consider energy stored not only between the ridges, buwith the applied force squared and also a power of thickness
within each ridge due to the presence of the other. To investhat depends on the details gf and f, in the ridge region.
tigate such effects we made a longb5250@ strip bent by ~ Two different types of scaling were identified. Generally, an
90° in two places. This creates two parallel ridges in theimposed strain comparable to the strain in a ridge stores an
same strip whose relative orientation can be changed. In Figgcnergy comparable to the ridge energy. This leads to an ef-
14 we plot the difference of the elastic energy of the twofective modulus of ordeE e/ X3~ YA®. A weaker modu-
ridges and twice the energy of one ridg& divided by the lus is possible for isolated ridges with stress-free boundaries
energy of one ridg& as a function\ for a fixed interridge  since the imposed strain can be relaxed in ways not acces-
separation oD =1.15X. The lower curve corresponds to the sible to ridges in a crumpled sheet.
configuration in which the two ridges have the same orien- A feature common to all types of ridge loading is that the
tation (U) and the upper curve corresponds to the ridges ofidge solution becomes unstable when the external forces
the opposite orientatiofiZ). The results are consistent with change the energy of the ridge by an amount that is compa-
the prediction that this ratio must approach a finite constantable to the original undisturbed ridge energy. This discovery
in the A— 0 limit. Therefore, the prediction that ridge inter- gives justification to a claim that the energy of a crumpled
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elastic sheet can be found once the ridge network is characharacterization of the ridge network in crumpled sheets that

terized in terms of the ridge siz&s and their dihedral angles incorporates the properties of ridges uncovered in this article

0; [16]. and makes a prediction for the ridge size distribution. We
We have found that the large distance part of the ridgehope to characterize the buckling behavior more thoroughly

solution that matches onto the boundary-layer solution exand verify our hypothesis that the generic scaling of the

hibits scaling with the thickness. We have established by modulus is that of the tetrahedron studied here.

an energy scaling argument as well as an extension of the

scaling analysis of the von Kaan equations that small
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